Effect of bacterial cellulose from cultivated banana on PLA properties

Student

Tananya Intaraudom ID number 57171010356 Tassadapan Khattiya ID number 57171010391

Adviser

PH.D. Chalao Thepchalerm

Polymer Material Technology, APIT

Srinakharinwirot University

Introduction

What's Bacterial cellulose?

Bacterial cellulose is an <u>organic compound</u> with the formula $(C_6H_{10}O_5)_n$ produced by certain types of <u>bacteria</u>. While <u>cellulose</u> is a basic structural material of most plants, it is also produced by bacteria, principally of the genera <u>Acetobacter</u>, <u>Sarcina ventriculi</u> and <u>Agrobacterium</u>. Bacterial, or microbial, cellulose has different properties from plant cellulose and is characterized by high purity, strength, moldability and increased water holding ability.

Properties of bacterial cellulose

- Cellulose is the main component of plant cell walls. Some bacteria produce cellulose (celled biocellulose or bacterial cellulose).
- Plant cellulose and bacterial cellulose (BC) have the same chemical structure, but different physical and chemical properties.
- BC is produced by culturing a strain of *Acetobacter xylinum*
- High water capacity, high crystallinity, ultrafine fibre networks with a diameter of 20–100 nm, high purity (which is distinguished from plant cellulose), and high tensile strength

Cellulose from bacteria

Properties of Polylactic acid (PLA)

Typical Resin Properties	Value	Standard Method
Melting Temperature (°C)	145	-
Density (g/cm ³)	1.26	ASTM D1505
Tensile Strength at Yield (kgf/cm ²)	300.3	ASTM D638
Elongation Ratio at Yield (%)	11.2	ASTM D638
Yield Strength (kgf/cm ²)	396.5	ASTM D638
Izod Impact Strength (J/m)	40.2	ASTM D256
HDT (load 66 psi) (°C)	73.6	ASTM D648
MFR.190 C.2.16 kg. (g/10min)	8.51	ASTM D1238
Hardness, Shore D (D)	89	ASTM D2240
Color	White	-
Mold Shrinkage Ratio (%)	0.246	ASTM D955

from : Properties of Polylactic acid(GP 330-1) (Bio Green World Co.,Ltd.)

Cultivated banana

- Cultivates banana is widely popular in Thailand. It's Cheap and Planted widely in all regions of the country.
- banana ripens the starch turns into several types of sugar (sucrose, fructose and glucose) and fructans appear to increase. Reactions to fully ripe banana has often been attributed to fructose. However, a fully ripe banana (yellow with some brown spots) is 14 % fructose, 20 percent glucose, and 66 percent sucrose

Characterization of bacterial cellulose reinforced by addition Polylactic acid (PLA)

Experimental method

Leave at room temperature for 3 days.

Adding A. xylinum for 10%

Result

BC-1,4-dioxane

BC-PLA-1,4-dioxane

Dissolution Testing				
BC	1,4 dioxane	PLA 10 %. In 1,4 dioxane	Weight of BC after soaking	
0.1151	5 ml	-	0.0972g	
0.1070	-	5 ml	0.1257g	

Conclusion

The effect of BC incorporation on mechanical properties, wettability, and water absorption behavior of PLA was analyzed. It is found that the pore structure PLA is improved by adding BC into PLA that adding BC into PLA can significantly improve the mechanical properties, wettability, and water absorption behavior of PLA

References

- Puechkaset. 2555 "Cultivation Banana properties. "[online] from:http://puechkaset.com/
- Anan Boonpan. (2550). The study of the optimal conditions for producing gelatin from heaven molasses. Rajamangala University of Technology and the University.
- Kriangkai Phatthayakorn. (2558). Features of the bacteria produced bacterial cellulose from the fruit. Kasetsart University.
- Sheet Environmental Protection Agency . (2557). Technical Fact 1,4-Dioxane
- Mark P. Staiger. (2550). BACTERIAL CELLULOSE NETWORKS FORREINFORCEMENT OF POLYLACTIDE. Department of Mechanical Engineering, University.

